Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447062

RESUMO

Bolboschoenus planiculmis (F.Schmidt) T.V.Egorova is a typical wetland plant in the species-rich Cyperaceae family. This species contributes prominently to carbon dynamics and trophic integration in wetland ecosystems. Previous studies have reported that the chromosomes of B. planiculmis are holocentric; i.e. they have kinetic activity along their entire length and carry multiple centromeres. This feature was suggested to lead to a rapid genome evolution through chromosomal fissions and fusions and participate to the diversification and ecological success of the Bolboschoenus genus. However, the specific mechanism remains uncertain, partly due to the scarcity of genetic information on Bolboschoenus. We present here the first chromosome-level genome assembly for B. planiculmis. Through the integration of high-quality long-read and short-read data, together with chromatin conformation using Hi-C technology, the ultimate genome assembly was 238.01 Mb with a contig N50 value of 3.61 Mb. Repetitive elements constituted 37.04% of the genome, and 18,760 protein-coding genes were predicted. The low proportion of long terminal repeat retrotransposons (∼9.62%) was similar to that reported for other Cyperaceae species. The Ks (synonymous substitutions per synonymous site) distribution suggested no recent large-scale genome duplication in this genome. The haploid assembly contained a large number of 54 pseudochromosomes with a small mean size of 4.10 Mb, covering most of the karyotype. The results of centromere detection support that not all the chromosomes in B. planiculmis have multiple centromeres, indicating more efforts are needed to fully reveal the specific style of holocentricity in cyperids and its evolutionary significance.


Assuntos
Cyperaceae , Ecossistema , Cromossomos , Centrômero/genética , Cariótipo , Cromatina , Cyperaceae/genética , Filogenia
2.
Pestic Biochem Physiol ; 198: 105745, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225088

RESUMO

Schoenoplectiella juncoides, a noxious sedge weed in Japanese rice paddy, has two ALS genes, and ALS-inhibitor-resistant plants have a mutation in one of the ALS genes. The authors aimed (a) to quantitate the effect of the number of mutant alleles of ALS genes on whole-plant resistance of S. juncoides and (b) to clarify a mode of inheritance of the resistance by investigating resistance levels of the progenies of a hybrid between two S. juncoides plants with Trp574Leu substitution in different ALS. A dose-response analysis on the parental lines and the F1 population suggested that the two ALS genes contribute equally to whole-plant resistant levels. A dose-response study on the F2 population indicated that it could be classified into five groups based on the sensitivities to metsulfuron-methyl. The five groups (in ascending order of resistance levels) were considered to have zero, one, two, three, and four mutant alleles. The stacking effect of mutant alleles on resistance enhancement was more significant when the number of mutant alleles was low than when it was high; in other words, each additional mutant allele stacking increases plant resistance, but the effect saturates as the number of mutant alleles increases. A chi-square test supported that the segregation ratio of the five groups corresponds to 1:4:6:4:1 of Mendelian independence for the two ALS loci.


Assuntos
Acetolactato Sintase , Cyperaceae , Herbicidas , Lixívia , Lixívia/farmacologia , Cyperaceae/genética , Herbicidas/farmacologia , Mutação , Alelos , Resistência a Herbicidas/genética , Acetolactato Sintase/genética
3.
Protoplasma ; 261(3): 527-541, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38123818

RESUMO

Cryptangieae has recently been revised based on morphology and molecular phylogeny, but cytogenetic data is still scarce. We conducted this study with the aim of investigating the occurrence of holocentric chromosomes and pseudomonads, as well as understanding the mode of chromosomal evolution in the tribe. We performed analyses of meiotic behavior, chromosome counts, and reconstruction of the ancestral state for the haploid number. We present novel cytogenetic data for eight potentially holocentric species: Cryptangium verticillatum, Krenakia junciforme, K. minarum, Lagenocarpus bracteosus, L. griseus, L. inversus, L. rigidus, and L. tenuifolius. Meiotic abnormalities were observed, with parallel spindles being particularly noteworthy. Intra-specific variations in chromosome number were not found, which may indicate an efficient genetic control for the elimination of abnormal nuclei. The inferred ancestral haploid number was n = 16, with dysploidy being the main evolutionary mechanism. At least five chromosomal fissions occurred in Krenakia (n = 21), followed by a further ascending dysploidy event in Lagenocarpus (n = 17). As proposed for Cyperaceae, it is possible that cladogenesis events in Cryptangieae were marked by numerical and structural chromosomal changes.


Assuntos
Cyperaceae , Cyperaceae/genética , Cromossomos , Filogenia , Evolução Molecular
4.
Plant Cell Rep ; 42(11): 1791-1808, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37747544

RESUMO

KEY MESSAGE: CeOLE genes exhibit a tuber-predominant expression pattern and their mRNA/protein abundances are positively correlated with oil accumulation during tuber development. Overexpression could significantly increase the oil content of tobacco leaves. Oleosins (OLEs) are abundant structural proteins of lipid droplets (LDs) that function in LD formation and stabilization in seeds of oil crops. However, little information is available on their roles in vegetative tissues. In this study, we present the first genome-wide characterization of the oleosin family in tigernut (Cyperus esculentus L., Cyperaceae), a rare example accumulating high amounts of oil in underground tubers. Six members identified represent three previously defined clades (i.e. U, SL and SH) or six out of seven orthogroups (i.e. U, SL1, SL2, and SH1-3) proposed in this study. Comparative genomics analysis reveals that lineage-specific expansion of Clades SL and SH was contributed by whole-genome duplication and dispersed duplication, respectively. Moreover, presence of SL2 and SH3 in Juncus effuses implies their appearance sometime before Cyperaceae-Juncaceae divergence, whereas SH2 appears to be Cyperaceae specific. Expression analysis showed that CeOLE genes exhibit a tuber-predominant expression pattern and transcript levels are considerably more abundant than homologs in the close relative Cyperus rotundus. Moreover, CeOLE mRNA and protein abundances were shown to positively correlate with oil accumulation during tuber development. Additionally, two dominant isoforms (i.e. CeOLE2 and -5) were shown to locate in LDs as well as the endoplasmic reticulum of tobacco (Nicotiana benthamiana) leaves, and are more likely to function in homo and heteromultimers. Furthermore, overexpression of CeOLE2 and -5 in tobacco leaves could significantly increase the oil content, supporting their roles in oil accumulation. These findings provide insights into lineage-specific family evolution and putative roles of CeOLE genes in oil accumulation of vegetative tissues, which facilitate further genetic improvement for tigernut.


Assuntos
Cyperaceae , Cyperus , Cyperus/genética , Cyperus/metabolismo , Cyperaceae/genética , Cyperaceae/metabolismo , Óleos de Plantas/metabolismo , Sementes/genética , Tubérculos/genética , Tubérculos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Mol Biol Rep ; 50(5): 4729-4733, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905402

RESUMO

BACKGROUND: Microsatellite primers were developed and tested to genotype several populations of Carex curvula s. l. (Cyperaceae), in order to infer the phylogeographic relationships of the populations within species and the boundaries between the two described subspecies: C. curvula subsp. curvula and C. curvula subsp. rosae. METHODS AND RESULTS: Candidate microsatellite loci were isolated based on next-generation sequencing. We tested 18 markers for polymorphism and replicability in seven C. curvula s. l. populations and identified 13 polymorphic loci with dinucleotide repeats. Genotyping results showed the total number of alleles per locus varied from four to 23 (including both infrataxa), and the observed and expected heterozygosity ranged between 0.1 to 0.82 and 0.219 to 0.711, respectively. Furthermore, the NJ tree showed a clear separation between C. curvula subsp. curvula and C. curvula subsp. rosae. CONCLUSION: The development of these highly polymorphic markers proved to be very efficient not only in delineating between the two subspecies, but also in genetic discriminating at population level within each infrataxon. They are promising tools for evolutionary studies in Cariceae section, as well as in providing knowledge on patterns of the species phylogeography.


Assuntos
Carex (Planta) , Cyperaceae , Carex (Planta)/genética , Cyperaceae/genética , Polimorfismo Genético/genética , Genótipo , Repetições de Microssatélites/genética , Loci Gênicos
6.
Mol Phylogenet Evol ; 182: 107760, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921696

RESUMO

Cyperaceae, the second largest family in the monocot order Poales, comprises >5500 species and includes the genus Eleocharis with âˆ¼ 250 species. A previous study of complete plastomes of two Eleocharis species documented extensive structural heteroplasmy, gene order changes, high frequency of dispersed repeats along with gene losses and duplications. To better understand the phylogenetic distribution of gene and intron content as well as rates and patterns of sequence evolution within and between mitochondrial and plastid genomes of Eleocharis and Cyperaceae, an additional 29 Eleocharis organelle genomes were sequenced and analyzed. Eleocharis experienced extensive gene loss in both genomes while loss of introns was mitochondria-specific. Eleocharis has higher rates of synonymous (dS) and nonsynonymous (dN) substitutions in the plastid and mitochondrion than most sampled angiosperms, and the pattern was distinct from other eudicot lineages with accelerated rates. Several clades showed higher dS and dN in mitochondrial genes than in plastid genes. Furthermore, nucleotide substitution rates of mitochondrial genes were significantly accelerated on the branch leading to Cyperaceae compared to most angiosperms. Mitochondrial genes of Cyperaceae exhibited dramatic loss of RNA editing sites and a negative correlation between RNA editing and dS values was detected among angiosperms. Mutagenic retroprocessing and dysfunction of DNA replication, repair and recombination genes are the most likely cause of striking rate accelerations and loss of edit sites and introns in Eleocharis and Cyperaceae organelle genomes.


Assuntos
Cyperaceae , Genoma Mitocondrial , Genomas de Plastídeos , Magnoliopsida , Filogenia , Genoma de Planta , Cyperaceae/genética , Evolução Molecular , Magnoliopsida/genética , Plastídeos/genética
7.
New Phytol ; 238(4): 1733-1744, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36759331

RESUMO

Changes in chromosome numbers, including polyploidy and dysploidy events, play a key role in eukaryote evolution as they could expediate reproductive isolation and have the potential to foster phenotypic diversification. Deciphering the pattern of chromosome-number change within a phylogeny currently relies on probabilistic evolutionary models. All currently available models assume time homogeneity, such that the transition rates are identical throughout the phylogeny. Here, we develop heterogeneous models of chromosome-number evolution that allow multiple transition regimes to operate in distinct parts of the phylogeny. The partition of the phylogeny to distinct transition regimes may be specified by the researcher or, alternatively, identified using a sequential testing approach. Once the number and locations of shifts in the transition pattern are determined, a second search phase identifies regimes with similar transition dynamics, which could indicate on convergent evolution. Using simulations, we study the performance of the developed model to detect shifts in patterns of chromosome-number evolution and demonstrate its applicability by analyzing the evolution of chromosome numbers within the Cyperaceae plant family. The developed model extends the capabilities of probabilistic models of chromosome-number evolution and should be particularly helpful for the analyses of large phylogenies that include multiple distinct subclades.


Assuntos
Cromossomos , Cyperaceae , Filogenia , Cyperaceae/genética , Poliploidia , Plantas/genética , Evolução Molecular
8.
Ann Bot ; 131(5): 813-825, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36815646

RESUMO

BACKGROUND AND AIMS: Satellite DNAs (satDNAs) are repetitive sequences composed by tandemly arranged, often highly homogenized units called monomers. Although satDNAs are usually fast evolving, some satDNA families can be conserved across species separated by several millions of years, probably because of their functional roles in the genomes. Tyba was the first centromere-specific satDNA described for a holocentric organism, until now being characterized for only eight species of the genus Rhynchospora Vahl. (Cyperaceae). Here, we characterized Tyba across a broad sampling of the genus, analysing and comparing its evolutionary patterns with other satDNAs. METHODS: We characterized the structure and sequence evolution of satDNAs across a robust dadated phylogeny based on Hybrid Target-Capture Sequencing (hyb-seq) of 70 species. We mined the repetitive fraction for Tyba-like satellites to compare its features with other satDNAs and to construct a Tyba-based phylogeny for the genus. KEY RESULTS: Our results show that Tyba is present in the majority of examined species of the genus, spanning four of the five major clades and maintaining intrafamily pairwise identity of 70.9% over 31 Myr. In comparison, other satellite families presented higher intrafamily pairwise identity but are phylogenetically restricted. Furthermore, Tyba sequences could be divided into 12 variants grouped into three different clade-specific subfamilies, showing evidence of traditional models of satDNA evolution, such as the concerted evolution and library models. Besides, a Tyba-based phylogeny showed high congruence with the hyb-seq topology. Our results show structural indications of a possible relationship of Tyba with nucleosomes, given its high curvature peaks over conserved regions and overall high bendability values compared with other non-centromeric satellites. CONCLUSIONS: Overall, Tyba shows a remarkable sequence conservation and phylogenetic significance across the genus Rhynchospora, which suggests that functional roles might lead to long-term stability and conservation for satDNAs in the genome.


Assuntos
Cyperaceae , DNA Satélite , DNA Satélite/genética , Cyperaceae/genética , Filogenia , Centrômero/genética , Sequências Repetitivas de Ácido Nucleico , Evolução Molecular
9.
Ann Bot ; 131(1): 143-156, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35226733

RESUMO

BACKGROUND AND AIMS: It is unclear how widespread polyploidy is throughout the largest holocentric plant family - the Cyperaceae. Because of the prevalence of chromosomal fusions and fissions, which affect chromosome number but not genome size, it can be impossible to distinguish if individual plants are polyploids in holocentric lineages based on chromosome count data alone. Furthermore, it is unclear how differences in genome size and ploidy levels relate to environmental correlates within holocentric lineages, such as the Cyperaceae. METHODS: We focus our analyses on tribe Schoeneae, and more specifically the southern African clade of Schoenus. We examine broad-scale patterns of genome size evolution in tribe Schoeneae and focus more intensely on determining the prevalence of polyploidy across the southern African Schoenus by inferring ploidy level with the program ChromEvol, as well as interpreting chromosome number and genome size data. We further investigate whether there are relationships between genome size/ploidy level and environmental variables across the nutrient-poor and summer-arid Cape biodiversity hotspot. KEY RESULTS: Our results show a large increase in genome size, but not chromosome number, within Schoenus compared to other species in tribe Schoeneae. Across Schoenus, there is a positive relationship between chromosome number and genome size, and our results suggest that polyploidy is a relatively common process throughout the southern African Schoenus. At the regional scale of the Cape, we show that polyploids are more often associated with drier locations that have more variation in precipitation between dry and wet months, but these results are sensitive to the classification of ploidy level. CONCLUSIONS: Polyploidy is relatively common in the southern African Schoenus, where a positive relationship is observed between chromosome number and genome size. Thus, there may be a high incidence of polyploidy in holocentric plants, whose cell division properties differ from monocentrics.


Assuntos
Cyperaceae , Cyperaceae/genética , Ploidias , Poliploidia , Cromossomos de Plantas , Biodiversidade , Genoma de Planta , Filogenia
10.
Cell ; 185(17): 3153-3168.e18, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35926507

RESUMO

The centromere represents a single region in most eukaryotic chromosomes. However, several plant and animal lineages assemble holocentromeres along the entire chromosome length. Here, we compare genome organization and evolution as a function of centromere type by assembling chromosome-scale holocentric genomes with repeat-based holocentromeres from three beak-sedge (Rhynchospora pubera, R. breviuscula, and R. tenuis) and their closest monocentric relative, Juncus effusus. We demonstrate that transition to holocentricity affected 3D genome architecture by redefining genomic compartments, while distributing centromere function to thousands of repeat-based centromere units genome-wide. We uncover a complex genome organization in R. pubera that hides its unexpected octoploidy and describe a marked reduction in chromosome number for R. tenuis, which has only two chromosomes. We show that chromosome fusions, facilitated by repeat-based holocentromeres, promoted karyotype evolution and diploidization. Our study thus sheds light on several important aspects of genome architecture and evolution influenced by centromere organization.


Assuntos
Centrômero , Cyperaceae , Animais , Centrômero/genética , Cyperaceae/genética , Evolução Molecular , Cariótipo , Plantas/genética
11.
Cell ; 185(17): 3083-3085, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35985286

RESUMO

In some plants and animals, microtubules attach across the length of the chromosome in mitosis, forming a holocentromere instead of a single centromeric locus. A new study in Cell shows that in the holocentric beak sedge Rhynchospora, holocentromeres also impact genomic architecture, epigenome organization, and karyotype evolution.


Assuntos
Centrômero , Cyperaceae , Animais , Centrômero/genética , Cyperaceae/genética , Microtúbulos , Mitose , Plantas/genética
12.
Mol Phylogenet Evol ; 177: 107588, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35907594

RESUMO

Juncaceae is a cosmopolitan family belonging to the cyperid clade of Poales together with Cyperaceae and Thurniaceae. These families have global economic and ethnobotanical significance and are often keystone species in wetlands around the world, with a widespread cosmopolitan distribution in temperate and arctic regions in both hemispheres. Currently, Juncaceae comprises more than 474 species in eight genera: Distichia, Juncus, Luzula, Marsippospermum, Oreojuncus, Oxychloë, Patosia and Rostkovia. The phylogeny of cyperids has not been studied before in a complex view based on most sequenced species from all three families. In this study, most sequenced regions from chloroplast (rbcL, trnL, trnL-trnF) and nuclear (ITS1-5.8S-ITS2) genomes were employed from more than a thousand species of cyperids covering all infrageneric groups from their entire distributional range. We analyzed them by maximum parsimony, maximum likelihood, and Bayesian inference to revise the phylogenetic relationships in Juncaceae and Cyperaceae. Our major results include the delimitation of the most problematic paraphyletic genus Juncus, in which six new genera are recognized and proposed to recover monophyly in this group: Juncus, Verojuncus, gen. nov., Juncinella, gen. et stat. nov., Alpinojuncus, gen. nov., Australojuncus, gen. nov., Boreojuncus, gen. nov. and Agathryon, gen. et stat. nov. For these genera, a new category, Juncus supragen. et stat. nov., was established. This new classification places most groups recognized within the formal Juncus clade into natural genera that are supported by morphological characters.


Assuntos
Cyperaceae , Regiões Árticas , Sequência de Bases , Teorema de Bayes , Cyperaceae/genética , Filogenia
13.
Genes Genet Syst ; 97(2): 93-99, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35545526

RESUMO

Interspecific hybridization is a critical issue in conservation biology because it may drive small populations to extinction through direct or indirect processes. In this study, to develop a conservation strategy for an endangered rear-edge population of Carex podogyna in Ashiu, Kyoto, Japan, we performed a molecular genetic analysis of the wild population and an ex-situ population established from wild seeds. Microsatellite genotypic data revealed a complete loss of genetic diversity in the wild population, suggesting that it has long been prone to genetic drift due to isolation as a small population. In contrast, microsatellite analysis of 13 ex-situ individuals detected multiple alleles that are not harbored in the wild C. podogyna population. Sequence analysis revealed that these individuals are likely natural hybrids between C. podogyna and a co-occurring species, C. curvicollis, although established hybrids have never been found in the natural habitat. Based on our observation of variegated leaves in hybrid individuals, we propose that hybrids have been excluded by natural selection and/or interspecific competition caused by insufficient productivity of photosynthesis, although other genetic and ecological factors may also be influential. Overall, this study indicates that natural mechanisms selectively removing the hybrids have maintained the genetic purity of this rear-edge population of C. podogyna, and also emphasizes the importance of genetic assessment in ex-situ conservation programs.


Assuntos
Carex (Planta) , Cyperaceae , Carex (Planta)/genética , Cyperaceae/genética , Variação Genética , Genótipo , Humanos , Hibridização Genética , Repetições de Microssatélites
14.
PLoS One ; 17(3): e0264419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358191

RESUMO

A new species, Carex borealifujianica Y.F. Lu & X.F. Jin (Cyperaceae, sect. Occlusae of core Carex clade) is described and illustrated from northern Fujian, China. In addition to morphological comparisons with its relatives, comparative micromorphology of utricles and achenes of seven species in Carex sect. Occlusae was examined. Micromorphology of utricles and achenes revealed the similarity of Carex borealifujianica and C. ligulata. Morphologically, this new species is similar to Carex ligulata in having lateral spikes remote and densely flowered, as well as utricles densely hispidulous, but differs in having 2 or 3 narrowly clavate staminate spikes, leaves 2.5-5 mm wide with sheaths sparsely pilose, and achenes emarginate at the apex. The phylogenetic analysis from two nuclear DNA regions (ETS and ITS) and two chloroplast DNA regions (matK and trnL-F) of 68 taxa resolved C. borealifujianica as a distinct species.


Assuntos
Carex (Planta) , Cyperaceae , Carex (Planta)/genética , China , Cyperaceae/genética , Flores , Filogenia
15.
Sci Rep ; 11(1): 3570, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574357

RESUMO

Chinese chestnut (Castanea mollissima Blume) seed kernels (CCSK) with high quality and quantity of starch has emerged as a potential raw material for food industry, but the molecular regulatory mechanism of starch accumulation in developing CCSK is still unclear. In this study, we firstly analyzed the fruit development, starch accumulation, and microscopic observation of dynamic accumulation of starch granules of developing CCSK from 10 days after flowering (DAF) to 100 DAF, of which six representative CCSK samples (50-100 DAF) were selected for transcriptome sequencing analysis. Approximately 40 million valid reads were obtained, with an average length of 124.95 bp, which were searched against a reference genome, returning 38,146 unigenes (mean size = 1164.19 bp). Using the DESeq method, 1968, 1573, 1187, 1274, and 1494 differentially expressed unigenes were identified at 60:50, 70:60, 80:70, 90:80 and 100:90 DAF, respectively. The relationship between the unigene transcriptional profiles and starch dynamic patterns in developing CCSK was comparatively analyzed, and the specific unigenes encoding for metabolic enzymes (SUSY2, PGM, PGI, GPT, NTT, AGP3, AGP2, GBSS1, SS1, SBE1, SBE2.1, SBE2.2, ISA1, ISA2, ISA3, and PHO) were characterized to be involved potentially in the biosynthesis of G-1-P, ADPG, and starch. Finally, the temporal transcript profiles of genes encoding key enzymes (susy2, pgi2, gpt1, agp2, agp3, gbss1, ss1, sbe1, sbe2.1, sbe2.2, isa1, isa2, isa3, and pho) were validated by quantitative real-time PCR (qRT-PCR). Our findings could help to reveal the molecular regulatory mechanism of starch accumulation in developing CCSK and may also provide potential candidate genes for increasing starch content in Chinese chestnut or other starchy crops.


Assuntos
Cyperaceae/genética , Amido/biossíntese , Transcriptoma/genética , Metabolismo dos Carboidratos/genética , China , Regulação da Expressão Gênica de Plantas/genética , Sementes/genética , Amido/genética
16.
Chromosoma ; 129(3-4): 285-297, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33165742

RESUMO

For a long time, the Cyperid clade (Thurniceae-Juncaceae-Cyperaceae) was considered a group of species possessing holocentromeres exclusively. The basal phylogenetic position of Prionium serratum (Thunb.) Drège (Thurniceae) within Cyperids makes this species an important specimen to understand the centromere evolution within this clade. In contrast to the expectation, the chromosomal distribution of the centromere-specific histone H3 (CENH3), alpha-tubulin and different centromere-associated post-translational histone modifications (H3S10ph, H3S28ph and H2AT120ph) demonstrate a monocentromeric organisation of P. serratum chromosomes. Analysis of the high-copy repeat composition resulted in the identification of two centromere-localised satellite repeats. Hence, monocentricity was the ancestral condition for the Juncaceae-Cyperaceae-Thurniaceae Cyperid clade, and holocentricity in this clade has independently arisen at least twice after differentiation of the three families, once in Juncaceae and the other one in Cyperaceae. In this context, methods suitable for the identification of holocentromeres are discussed.


Assuntos
Cromossomos de Plantas , Cyperaceae/classificação , Cyperaceae/genética , Filogenia , Centrômero/genética , DNA Satélite , Genoma de Planta , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Proteínas de Plantas/genética
17.
Sci Rep ; 10(1): 8990, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488082

RESUMO

Tussock cottongrass (Eriophorum vaginatum) is a foundation species for much of the arctic moist acidic tundra, which is currently experiencing extreme effects of climate change. The Arctic is facing higher summer temperatures and extreme weather events are becoming more common. We used Illumina RNA-Seq to analyse cDNA libraries for differential expression of genes from leaves of ecologically well-characterized ecotypes of tussock cottongrass found along a latitudinal gradient in the Alaskan Arctic and transplanted into a common garden. Plant sampling was performed on a typical summer day and during an extreme heat event. We obtained a de novo assembly that contained 423,353 unigenes. There were 363 unigenes up-regulated and 1,117 down-regulated among all ecotypes examined during the extreme heat event. Of these, 26 HSP unigenes had >log2-fold up-regulation. Several TFs associated with heat stress in previous studies were identified that had >log2-fold up- or down-regulation during the extreme heat event (e.g., DREB, NAC). There was consistent variation in DEGs among ecotypes, but not specifically related to whether plants originated from taiga or tundra ecosystems. As the climate changes it is essential to determine ecotypic diversity at the genomic level, especially for widespread species that impact ecosystem function.


Assuntos
Cyperaceae/fisiologia , Regulação da Expressão Gênica de Plantas , Alaska , Regiões Árticas , Cyperaceae/genética , Ecótipo , Calor Extremo , Perfilação da Expressão Gênica , Ontologia Genética , Temperatura
18.
Mol Phylogenet Evol ; 145: 106727, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31899222

RESUMO

Trichophoreae is a nearly cosmopolitan Cyperaceae tribe that contains ~17 species displaying striking variation in size, inflorescence complexity, and perianth morphology. Although morphologically distinct, the status of its three genera (Cypringlea, Oreobolopsis and Trichophorum) is controversial because recent phylogenetic studies have suggested they might not be reciprocally monophyletic. However, previous analyses have shown conflicting topologies and consistently poor support due to an initial rapid diversification of the tribe. We analysed restriction-site associated DNA sequencing (RADseq) data from nearly all species of the clade, combined with five Sanger-based markers (matK, ndhF, rps16, ETS-1f, ITS) sampled extensively within species. This approach allowed us to resolve deep and shallow relationships within Trichophoreae for the first time, despite an anomaly zone spanning several successive short branches that produced considerable gene tree incongruence. Analyses reveal a primary phylogenetic split of the tribe into two clades roughly corresponding to an East Asian-North American disjunction that dates back to the mid-Miocene, with both clades comprised of a mixture of reduced unispicate and larger taxa with highly compound inflorescences. Morphological characters traditionally used in the circumscription of Trichophoreae genera are shown to be homoplasious. Several of these characters correlate best with climatic conditions, with the most reduced species occurring in open habitats at high latitudes and altitudes. Close relatives with highly compound inflorescences are found in temperate or subtropical forest understories. Cypringlea and Oreobolopsis are deeply nested within Trichophorum, and we merge all three genera into a more broadly circumscribed Trichophorum. We also show that Scirpus filipes is another previously unrecognized East Asian species of Trichophorum with highly compound inflorescences.


Assuntos
Cyperaceae/classificação , Teorema de Bayes , Biodiversidade , Cyperaceae/anatomia & histologia , Cyperaceae/genética , DNA de Plantas/química , DNA de Plantas/metabolismo , DNA Ribossômico/química , DNA Ribossômico/metabolismo , Funções Verossimilhança , Filogenia , Filogeografia , Plastídeos/genética , Análise de Sequência de DNA
19.
New Phytol ; 225(1): 196-208, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400239

RESUMO

Variation in resource availability can lead to phenotypic plasticity in the traits comprising the world-wide leaf economics spectrum (LES), potentially impairing plant function and complicating the use of tabulated values for LES traits in ecological studies. We compared 14 Carex (Cyperaceae) species in a factorial experiment (unshaded/shaded × sufficient/insufficient P) to analyze how changes in the network of allometric scaling relationships among LES traits influenced growth under favorable and resource-limited conditions. Changes in leaf mass per area (LMA) shifted the scaling relationships among LES traits expressed per unit area vs mass in ways that helped to sustain growth under resource limitation. Increases in area-normalized photosynthetic capacity and foliar nitrogen (N) were correlated with increased growth, offsetting losses associated with mass-normalized dark respiration and foliar N. These shifts increased the contributions to growth associated with photosynthetic N-use efficiency and the N : P ratio. Plasticity in LMA is at the hub of the functional role of the LES as an integrated and resilient complex system that balances the relationships among area- and mass-based aspects of gas exchange and foliar nutrient traits to sustain at least some degree of plant growth under differing availabilities of above- and below-ground resources.


Assuntos
Cyperaceae/fisiologia , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Cyperaceae/genética , Cyperaceae/crescimento & desenvolvimento , Cyperaceae/efeitos da radiação , Ecologia , Luz , Tamanho do Órgão , Oxigênio/metabolismo , Fenótipo , Fósforo/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação
20.
Mol Phylogenet Evol ; 135: 203-209, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30880144

RESUMO

Large-scale changes in chromosome number have been associated with diversification rate shifts in many lineages of plants. For instance, several ancient rounds of polyploidization events have been inferred to promote genomic differentiation and/or isolation and, consequently, angiosperm diversification. Dysploidy, although less studied, has been suggested to also play an important role in angiosperm diversification. In this article, we aim to elucidate the role of chromosomal rearrangements on lineage diversification by analyzing a new comprehensive sedge (Cyperaceae) phylogenetic tree. Our null hypothesis is that the mode and tempo of chromosome evolution are to be homogeneous across the complete phylogeny. In order to discern patterns of diversification shifts and chromosome number changes within the family tree, we tested clade-specific chromosome evolution models for several subtrees according to previously reported increments of diversification rates. Results show that a complex, heterogeneous model composed of different clade-specific chromosome evolution transitions are significantly supported against the null hypothesis of a model with no chromosome number model transition events along the phylogeny. This could suggest a link between diversification and changes in chromosome number evolution although other possibilities are not discarded. Our methodological approach may allow identifying different patterns of chromosome evolution, as found for Cyperaceae, for other lineages at different evolutionary levels.


Assuntos
Cromossomos de Plantas/genética , Cyperaceae/genética , Evolução Molecular , Modelos Biológicos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...